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In the complex game of Tantrix current approaches to artificial intelligence fail to beat even moderate 

human players. Monte Carlo tree search has been proven to be successful in games such as Go, 

Backgammon, and Poker. This report covers the design, construction and testing of a Tantrix playing 

program which implements the Monte Carlo tree search strategy. The program was able to defeat the 

previously best performing Tantrix bots. 
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Chapter 1: Introduction 

 

Traditional artificial intelligence (AI) approaches to searching game trees rely heavily on 

distinguishing between good and bad game scenarios. They firstly create a game tree to represent 

possible future game scenarios. These trees are often very large and usually can only be partially 

created or searched. A static evaluation function is applied to score the quality of the leaf nodes, 

allowing them to be compared. By comparing leaf nodes we can determine the best scenario to target. 

These scores are then propagated back up the tree to provide information for choosing the best 

possible move. 

The key element of traditional approaches is the static evaluation function. This also applies to the 

refinements and optimisations on these traditional approaches, such as alpha-beta pruning. For 

complex games, these evaluation functions are often difficult to create. As traditional AI approaches 

rely on static evaluation functions they often have limited success with complex games. Conversely, 

Monte Carlo tree search (MCTS) removes the need for a static evaluation function by replacing it 

with results from a number of randomly played games. These games are played out from selected leaf 

nodes, thereby informing us on specific areas of interest within the tree.  

Additionally, MCTS incorporates a dynamically growing game tree, trading off exploration of every 

possible move with an exploitative strategy of more frequent and hence deeper analysis of promising 

moves. Recently MCTS has shown great promise in the game of Go, offering significant 

improvements over any previous techniques
 [4]

.  

One such game that makes finding a suitable evaluation function difficult is the game of Tantrix, due 

to its constantly changing board shape and complex rules. This report aims to investigate whether 

Monte Carlo tree search is a viable algorithm for this game. Tantrix was chosen as it is a game of 

imperfect information, which has elements of chance combined with a set of complex rules. This 

makes designing a suitable evaluation function difficult, subsequently allowing the existing bot 

designs to be beaten by moderately skilled human players 
[1]

. For these reasons, I believe Tantrix is an 

interesting candidate for MCTS, an algorithm that has already been proven to be successful for games 

such as Go 
[4]

 and Backgammon 
[13]

. 
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The Rules of Tantrix 

 

Tantrix is an abstract strategy game invented by New Zealander Mike McManaway in 1988. The 

earlier versions of the game were called Mind Game and involved hexagonal tiles crafted out of 

cardboard.  This game only had tiles with two differently coloured lines therefore restricting it to only 

two players. Gradually the rules and tiles have been adjusted to include two more colours into the 

game and a whole new set of tiles. In 1992 the game of Tantrix became as we know it today. 

In Tantrix there are 56 unique hexagonal tiles which share some similarities, as shown in figure 1.  

Each piece is one of four shapes: sint (single intersection), brid (bridge), chin (Chinese character), and 

rond (roundabout). 

 
Figure 1: The four types of Tantrix tile (from Tantrix.com [9]) 

Tantrix is played with a maximum of four players, although this project concentrated on the more 

strategic two-player version of the game.  

At the start of the game each player is assigned his/her own colour (red, yellow, blue or green). 

Players take turns in placing tiles while aiming to create the longest line or loop of their assigned 

colour. The score for each player is made by the number of tiles involved in his/her longest line. If a 

line is closed into a loop each tile involved counts as two points. The game ends when every tile has 

been played and the player with the most points wins. 

A player‘s hand consists of six tiles. Each time a tile is played a replacement tile is drawn from the 

bag unless no more tiles are available. The bag contains all remaining tiles to ensure the player draws 

his/her tile randomly. A player‘s hand is exposed so other competitors know which tiles are held. 

Therefore through a process of elimination the players can gain knowledge about the tiles that are left 

in the bag. More importantly, because of forced plays (see below), a player may take advantage of the 

tiles in another player‘s hand. 

The tiles played must always form a simple connected region, and the colours of each tile played must 

match about their edges. This is the ―golden rule‖ that holds for the duration of the game.   

 

 

  

http://en.wikipedia.org/wiki/Abstract_strategy_game
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Forced Plays 

An important concept in the game of Tantrix is forced plays. A forced play is available, whenever 

there is an empty space surrounded by three edges. At the beginning and end of each turn players 

must check all forced spaces to see if they can be filled. Once a player has made a forced play he/she 

must then pick up another tile (if available) and again check for possible forced plays. Therefore in 

Tantrix a player‘s turn can consist of multiple moves. 

 
Figure 2: An example of a Forced Play (from Tantrix.com [9]) 

 

There are three other restrictions when playing a tile. These are outlined below.  

1. You may not surround a forced space with another tile. A tile can only be played if it doesn‘t 

lead to a situation where it creates a space of four or more sides to be filled. 

 
Figure 3: An invalid move due to restriction 1 (from Tantrix.com [9]) 

2. You cannot place a tile along a ―controlled side‖ as it indirectly leads to the situation 

considered in the first restriction. When a forced space is created, it must be filled before 

playing more tiles along that row. For example in figure 2, position ―A‖ is a forced space. 

Placing a tile in position ―B‖ would create a string of forced moves indirectly leading to the 

situation presented in restriction 1. A preventative measure for figure 4 is to place the tiles 

across the controlled side in order from left to right, thereby ensuring the situation 

encountered in figure 3 won‘t occur at a later date. 

 

 
Figure 4: A controlled side (from Tantrix.com [9]) 

 

3. You may not create a forced play where all three links are the same colour, as there is no tile 

that can fill this. An example is shown in Figure 5. 
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Figure 5: An invalid move due to restriction 3 (from Tantrix.com [9]) 

 

The Endgame 

Once there are no tiles left in the bag all three of the restriction rules are lifted, leaving only the forced 

plays and the golden rule. This allows players to deliberately block the opponent‘s lines by creating 

spaces that are impossible to full. 
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Chapter 2: Classical AI Approaches 

Game-Trees 

A game tree is used to represent the different outcomes of choosing a move in a game. The tree is 

made up of nodes, where each node represents a possible game state or board layout. These nodes are 

connected together by edges to form the tree structure. Each edge represents the move required to 

achieve a resulting board layout. Game trees have been proven successful in managing the game 

information for smaller games; therefore they are commonly used in traditional AI algorithms. The 

game trees are generally large, thus storing and searching them effectively becomes an issue.  

Static Evaluation Functions 

Classical AI approaches generally rely on a static evaluation function to estimate the value of a leaf 

nodes game state in the tree. These values are then propagated up the tree to provide information on 

which game state is most likely to lead to a favourable result. The move that leads to the highest 

scoring game state can then be selected as the most promising. 

Evaluation functions are considered static as they do not consider other nodes when calculating their 

value. Because of this, comparisons between nodes and the game states they represent can only be as 

good as the quality of their individually generated values. 

Minimax 

Minimax is an algorithm that is used in ―full information‖ games; games in which the opponent‘s 

possible moves are known. It is used to allow comparisons of future game states beyond the next 

possible move. This is done by assuming the opponent‘s most favourable move is the least favourable 

for us. Thus, when estimating which move the opponent will make we can choose the one with the 

lowest score. The backpropagation strategy describes how this score is propagated up from the leaf. 

We can use a pessimistic approach and assume our opponent will always choose the move that is 

worst for us. This means that even if the opponent chooses a different move, our evaluation function 

would consider us to be in a better state than initially expected.  Minimax can also be adapted to 

games with an element of chance (such as Tantrix) by using an averaging procedure at the chance 

nodes. 

Alpha-Beta 

Alpha-Beta is an extension to the search algorithm Minimax. It is used to search game trees and 

provide the same evaluation as Minimax but in a more efficient way. Minimax picks the best possible 

move by using information from an evaluation function to allow comparison between game states. In 

Alpha-Beta, pruning techniques are used to skip branches of the tree which are known to offer the 

opponent stronger moves than would otherwise be available.  

Limitations 

The large game tree in Tantrix limits the depth in which Minimax can search. Although Alpha-Beta 

does offer significant improvements over Minimax, it is still limited by the complexity of the game 

tree. Therefore, the evaluation function is required to accurately calculate scores for the leaf nodes. 

Finding an evaluation function in Tantrix that can perform these accurate calculations is difficult and, 

in this case, it is a major limiting factor for alpha-beta search programs. By instead using MCTS, we 

don‘t escape dealing with the complex game tree to some extent but instead choose which parts of the 

tree we explore or exploit. 
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Previous Work 

In January 2005 the Tantrix playing bot, GoodBot, was first released. GoodBot is closed source and 

only a brief description of how it works has been released. This bot uses an alpha-beta search 

combined with an evaluation function that tries to predict the final length of the lines at the end of the 

game. In May 2005, a new open source bot named Oliver emerged. Oliver was written by Pieter Bolle 

and was submitted for a degree of Master of Engineering in at Katholieke Universiteit Leuven, in 

Belgium. Oliver works similarly to GoodBot by using a range of heuristics to score each game state. 

This was combined with an alpha-beta search to dethrone GoodBot.  

Oliver‘s evaluation function works by predicting how long the line will be at the end of the game. 

Lines that might be connected are considered as a single line, modified by the probability that the 

right tiles will be drawn to connect these lines.  

On May 11th Oliver beat GoodBot with a winning percentage of 64.5% to 30.5% (5% were tied). 

Three months later a new version of GoodBot was released to re-challenge Oliver.  Two hundred 

games were played where GoodBot beat Oliver with a winning percentage of 55% to 39% (6% were 

tied). GoodBot has retained its title to this day and is considered the strongest Tantrix-playing bot. 
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Chapter 3: Monte-Carlo Tree Search 

Overview 

A major advantage of MCTS over traditional approaches is that MCTS doesn‘t rely on static 

evaluations for comparison. It instead works by using the results from a large number of simulated 

games to determine probabilistically the best move available. The MCTS cycle can be split into the 

four main parts outlined in the diagram below. This cycle can then be repeated a large number of 

times to increase the size and information in the game tree and thus provide more accurate grounds to 

predict the best solution. 

 

 
Figure 6: The MCTS cycle 

 

In greater detail, the four parts of the MCTS cycle work as follows. 

Selection 

This is the process of traversing down known moves in the current game tree until a leaf node is 

reached. When traversing the game tree two strategies need to be taken into consideration; exploring a 

range of different moves to help decide which move is best (exploration), and exploiting the currently 

known best move to gain confidence that this move is actually favourable (exploitation). The UCT 

algorithm (discussed later) is used at this stage to find a balance between these two different 

approaches. Like the Minimax strategy each player‘s perspective is taken into account when choosing 

the move with the best UCT score. Once a leaf is reached, this stage ends and the expansion stage 

begins. 

Expansion 

An expansion strategy is used to add one or more additional nodes to the game tree. The simplest 

approach is to simply produce one node per iteration. This prevents the tree from growing too large 

too quickly and helps reduce the amount of memory required.  Once the unexplored node has been 

added to the tree the simulation stage begins. 
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Simulation 

The simulation process replaces the need for a static evaluation function. It involves playing a 

complete simulated game from the current leaf. This is done through self-play by choosing random 

moves for each player. Keeping the simulation stage simple allows for more simulations to be 

performed within a set timeframe. As the results are not intentionally biased towards any of the 

possible game situations, they would be expected to converge to a more even distribution as the 

number of simulations increases.  

Backpropagation 

A backpropagation strategy is used to propagate the result of the simulation back up the game tree. It 

does this by traversing back up the current path in the game tree, updating each node encountered on 

the way. The backpropagation strategy used informs each encountered node of the result from 

previous simulation (win, loss, or draw). This information is then used by the node to update its win 

rate. Each sibling of these nodes also gets updated to ensure its UCT score is kept current (see UCT 

below).  

In practice the choice of the backpropagation strategy used makes little difference to the performance 

of the bot, especially when compared to the influences created by the other stages in the MCTS cycle. 

Therefore the backpropagation strategy seems more a matter of art and personal preference than an 

exact science. 

 

Multi-Armed Bandit Problem  

The key difficulty in MCTS is the implementation of the selection phase. To understand the issues 

involved, we can consider the multi-armed bandit problem. This problem draws its name from a 

traditional slot machine known as a one-armed bandit. When multiple levers are available, each can 

be associated with a win rate to model the chance of a win (pay-out) for that machine. The multi-

armed bandit problem aims to maximise the return from these machines whilst trying to minimise 

potential losses.  

Testing arms which don‘t pay off will result in a poor return, however, if not enough arms are 

explored there won‘t be enough confidence that better moves don‘t exist. This problem highlights the 

importance of balancing the exploration and exploitation of machines. Greedy algorithms try to 

exploit the best arms whilst often failing to explore other (possibly better) solutions. 

We can use each arm from the multi-armed problem to represent a different game move that can be 

chosen. This allows us to find out which move would give us the best chance of winning by using 

each slot machine arm to represent a possible game move. Each time an arm is pulled some kind of 

reward is received, and in the case of the Tantrix game tree, this reward is either a win or a loss. 

Picking unexplored arms (exploration) improves the chance of finding a better move, but if this is 

repeated excessively, the confidence in each moves win rate will be low. However, if the same arm is 

frequently selected (exploitation), there won‘t be enough confidence that other less frequently 

explored moves won‘t transpire to be better.  
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Upper Confidence Bound for Trees (UCT) 

 

Upper Confidence Bound for Trees (UCT) is an extension of MCTS that is used to manage the multi-

armed bandit problem. UCT is implemented in the selection stage to maintain the balance between 

exploration and exploitation. This is done by creating a bias that slowly grows to favour the 

exploration of different paths in the game tree. The UCT score for each node is a combination of this 

exploration bias and the win rate of the node. The node with the largest UCT value is then chosen as 

the most suitable candidate for traversal. 

The UCT value is comprised of an exploration term and an exploitation term. These terms are added 

together to make up the UCT value. The exploitation term is simply the win rate of the current node. 

This is calculated for each node by the ratio of games it won from the number of simulated games the 

node was involved in. Initially the UCT value was calculated from equation 7 until it was changed to 

a more customisable formula (equation 8) which includes a variable to customise the balance between 

exploitation and exploration.  

In equations 7 and 8, the win rate is the ratio between number of wins the current node was involved 

and the number of times that node was visited (node.visits). The   value in equation 8 tunes the 

balance between exploration and exploitation. Through testing it was discovered that an   of 0.35 was 

the most successful for this program (see results section). 

 

 

                  √
  (             )

(           )
 

[7] 
 
The fundamental part of the exploration term is that it contains a ratio between the number of visits 

for the node and the number of visits for its parent. The exploration term for a node will get larger if 

the node‘s parent is visited but the node itself is not. This also decreases the exploration term when a 

node gets visited.  

                   √
  (             )

(           )
 

[8] 
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Chapter 4: Design 

System Design 

When starting out this project I choose to start from an existing open source bot, named Oliver. Since 

I began from an existing system the Tantrix implementation could be ignored and the focus could 

remain on choosing the most promising move. The features inherited from Oliver include integration 

with the server Tantrix.com, graphical display of the game, and the representation details of the game 

and tiles. 

Tiles 

Each tile can be represented by a string of six letters, where each letter represents the colour at a 

particular side of the tile. The colours are listed in a clockwise direction, starting from the north-

eastern side.  Each tile also requires an orientation, a single number from zero to five, which shows 

how the tile has been rotated. The tile string represents each tile for the orientation 0 and the 

orientation increases by one for each single clockwise rotation of the tile. Additionally each tile is 

assigned a unique number (its position in a static array of tiles) which can also be used to represent it. 

For example, the tile in figure 9 is given the tile number 56 and the tile string BGRGRB. 

 

 

Figure 9: The tile associated with number 56, the tile string BGRGRB, and the orientation 0 (from Tantrix [10]) 

 

 
 

Figure 10: The same tile with the orientation of 1 and an orientation of 3 (from Tantrix [10]) 
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Figure 11: A screenshot of a game between the MCTS bot and an existing Tantrix bot, named Oliver. 

 

Figure 11 shows a game between the MCTS bot, MonteCarloBot (MCB), and an existing Tantrix bot, 

named Oliver. The MCB is playing as the yellow player and Oliver is playing as the green player. 

Currently MCB is winning with a score of 16, this score comes from the length of the longest yellow 

line, which can be seen starting from the bottom left and ending at the top. The longest green line 

starts at the same tile (bottom left) and also ends near the top, but with a length of only 12. The time 

under each player shows the total number of seconds each player has spent thinking. As the number of 

tiles played by each player may not be equal, unless averaged over a large number of games, the 

displayed time is not a good indication of each bot‘s speed. The yellow dot at the top of the board 

highlights the position of a forced move and the colour of the player that can fill it. As it is currently 

MCB‘s turn it must fill this space. 

Coordinates 

Due to the hexagonal pieces in Tantrix, finding a simple coordinate system was a problem. The 

current system design uses a hexagonal grid with x and y coordinates, but in order to do this only half 

of the positions can be valid. Therefore x and y need to have the same parity. The neighbours of the 

position (x, y) in the grid can be reached by adjusting the x and y figures by the amounts shown in 

figure 12. 
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Figure 12: The adjustments on x and y respectively to move to a different coordinate in the coordination system. The tile is 

considered to be at coordinate (x, y). 

 

Moves 

By using these representations a move can simply consist of a tile number, an orientation, and a 

coordinate. Once a move has been made, if the tile bag is not empty, a new tile is drawn and added to 

the player‘s stack to replace the previously played tile. 

 

 

Monte Carlo Bot Design 

Tantrix Game Tree 

At the start of each turn the game tree is reset and a new one is created. Ideally the root would be 

adjusted so it always represents the current board situation. This would save the relevant results from 

previous simulations. However, in Tantrix this makes little difference, as a turn can consist of 

multiple moves. To find the current game state, the game tree may have to be searched deeply after an 

opponent‘s turn. Even if the game state is found, the simulations can be quickly repeated so changing 

the root becomes redundant.  Therefore the tree is simply wiped and the MCTS process is started 

fresh.  

Tantrix is different to most other games in that a turn can consist of multiple moves. There are three 

main parts to each turn; playing all available forced moves, selecting a free move, and then playing 

any remaining forced moves. There is an element of chance in Tantrix due to drawing a random tile 

after a tile is played.  As a result, the same path in the tree cannot be expected to remain valid between 

simulations. A new type of node called a chance node was introduced to deal with this issue. 

Chance Nodes  

The representation of chance nodes in a game tree has proven to be a successful addition for 

traditional AI game playing models involving games with a chance factor, such as Backgammon
[13]

. 

The chance nodes used in Tantrix always follow a game node (traditional node) and only represent the 

last tile drawn from the bag. In the game tree, traveling to game nodes can be thought of as playing a 

move. The following chance node would represent the tile that was drawn as a result. If the tile drawn 

is contained in one of the chance nodes then that path through the tree is taken. Otherwise, a new 

chance node containing this move is added to the tree and the expansion stage begins. 
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Figure 13: A game tree with the inclusion of chance nodes. At each game node all possible forced moves must be made 

before and after each free move is made. Therefore multiple game nodes can be visited before changing player.  

Best Move Chooser 

After the simulations are completed all possible moves are compared and the move with the highest 

visit count is chosen (as opposed to the move with the best win rate). This is because choosing the 

move with the best win rate doesn‘t consider the number of simulations that move was involved in. 

Therefore the confidence in that win rate could be low. Since UCT often exploits the most promising 

moves, they become the most visited nodes in the tree. This allows a nodes visit count to indicate the 

lower bound of its win rate. In doing so, our confidence for each move is considered, allowing moves 

to be chosen that do not necessarily have the highest win rate, but the win rate with the highest lower 

bound.  

In practice it is reasonably uncommon to have a situation in Tantrix where the move with the highest 

win rate is not the most visited move. Therefore the performance gained/lost from choosing these 

different approaches is small when in comparison to the influences from factors such as alpha. 

Monte Carlo in Tantrix 

Like most games, the number of moves required to finish a simulation in Tantrix becomes smaller 

throughout the game. Since the MCTS bot is run for a set amount of time per move, fewer iterations 

of the MCTS cycle are performed at the start of the game. This causes the number of cycles to 

increase towards the end of the game, often by over 2000%. Throughout the game the number of 

possible tiles to be drawn decreases. This makes it easier to predict the end game result, so the MCTS 

cycles towards the endgame contain the most valuable information. Increasing the number of these 

cycles towards the end of the game radically increases the information known about the game‘s end 

state. This allows the bot to choose stronger moves. As there are fewer moves left in the game the 

opponent is left with less time to recover. 
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This approach also suggests weaker moves may be chosen at the start of the game. In Chapter 6, a 

method has been suggested to test whether this has much of an influence on the performance of the 

bot.  

 

Selection 

The game tree is traversed until a leaf node is encountered. The decision in the selection stage acts 

like a Minimax algorithm with a depth of one. It simply searches from the root by iteratively selecting 

the child with the highest UCT score.   As the win rate for the opponent‘s move was reversed in the 

backpropagation stage, when choosing the child to explore, the one with the highest UCT value can 

always be chosen. This automatically considers the relative player‘s perspective while choosing their 

best move.  

Expansion 

In the expansion stage all possible moves are added as new children, as each node contains no 

information on the possible moves available. These nodes are initialised with their parent‘s win rate as 

this is currently the best estimate we have of their true value. Once the node has been visited the 

stored win rate for the node becomes its own.  

Simulation 

During the simulation stage a complete simulated game is played from the current leaf. Random 

moves are chosen for each player to ensure the play out of moves is fast and unbiased. Each simulated 

game returns a value {1, 0, 0.5} to represent whether the game (from the MCTS bot‘s perspective) 

was won, or lost, or drawn. 

Support for Draws 

During the simulation stage any draw is considered as half a win, this allows them to be distinguished 

from wins and losses and still contribute information to the win rate.  

Tantrix sometimes ends up in a stuck game state, where neither player has an available move. When 

this situation arises the game is considered a draw. This scenario can be exploited using the MCTS 

approach as each simulation that reaches the stuck state has a win rate of 0.5. If the nodes‘ siblings are 

considered to have a lesser win rate then a draw becomes favourable. 

Backpropagation  

Each move is undone and the simulated game result is passed on to the nodes involved. The UCT 

scores for the move and all its siblings are also calculated. All nodes involved are updated with the 

resulting score, as calculated from the method shown in Figure 14.  

 

Figure 14: The method that is called to update the UCT values for sibling nodes. 
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The win rate for a move is always considered from the point of view of the player that made it. Every 

simulation we win is considered a loss from the opponent‘s perspective. This simplifies the selection 

process as the maximum win rate can be used to represent the best move for both players. 

Each tile has the same chance of being drawn from the bag. Therefore, chance nodes contain no 

interesting information about the odds of drawing tiles compared to others. The chance of drawing 

required tiles will influence the win rate as the tiles are drawn randomly. The backpropagation process 

was simplified to exclude chance nodes completely by passing information directly between game 

nodes.   

There are other possible ways to involve chance nodes in the backpropagation stage but as they 

appeared to offer no major benefits I chose to inform each game node of its result whilst traversing 

back up the tree. An alternative approach is setting chance nodes to contain the average win rate of 

their children. Each remaining tile has an equal chance of being drawn. Due to this, the average win 

rate of the children would represent the average score expected when traveling through this node. As 

the win rate is already influenced by the chance to draw tiles, this process is not necessary.  
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Chapter 5: Results 

  

The MCTS bot was tested against GoodBot, the currently best performing bot on Tantrix.com. Games 

were played against different versions of the MCTS bot. The versions in Figure 15 were used to test 

the effect of changing the alpha value. For this test each MCTS bot was allowed a fixed amount of 

time per move (four seconds). Figure 16 shows the results of keeping alpha fixed (at 0.5) and allowing 

each MCTS bot a different amount of time per move. The results shown in both Figure 15 and Figure 

16 are against GoodBot and include error bars for a 95% confidence interval. The number of trials for 

each bot can be found in Appendix A. 

Figure 15 shows a win rate of over 50% against the currently best performing bot, GoodBot, for every 

alpha value tested within the range of 0.35 and 1. This was done using a conservative amount of time 

per move (four seconds). Even in the worst case this falls well within the maximum time allowed per 

game (15 minutes). Increasing the time the bot is allowed for each move further increases the win rate 

(as shown in Figure 16).  

Three hundred and forty games were played out against both GoodBot and Oliver. In these games an 

alpha of 0.5 was used with a maximum of 6 seconds allowed per move. The win rate against Oliver 

was 71.8% and the win rate against GoodBot was 68.2%. This shows that the MCTS bot comfortably 

outperforms what were considered to be the two best Tantrix playing bots. 

 

 

 
Figure 15: Showing the effect of changing alpha on the win rate against GoodBot using a 95% confidence interval. Note: as 

alpha 0 did not manage to win a game calculating a confidence interval for this value was not possible 
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Figure 16: Showing the effect changing the time allowed per move has on the win rate when against GoodBot with a 95% 

confidence interval 

 

Discussion 

Alpha 

The alpha value plays an important part in the UCT formula as it can be used to directly influence the 

balance between exploitation and exploration. An alpha value of 0 would be a purely greedy approach 

and only explore the move with the highest current win rate. In particular the first simulated move 

leading to a win will always be chosen, although the optimal value for alpha is likely to be unique for 

the program. Through testing it was found that values below 1 provided the best results. More 

precisely it was found that an alpha value of 0.35 created the best performing bot. A low alpha causes 

the UCT equation to favour exploitation rather than exploration. As the game tree for Tantrix is 

complex the game nodes generally have a large number of siblings. Increasing the number of 

simulations involving the favourable moves becomes important as it increases the confidence in the 

moves that are most likely to be played. 

Time allowed each move 

In Tantrix the total decision time allowed for each player is 15 minutes, any longer and the game is 

considered a loss. As there is a maximum of 50 possible moves for a player (one player draws all of 

the tiles), up to 18 seconds can be used to play each move.  

As the time allowed for each move increases, the bot can perform more simulations. This provides 

more accurate win rate estimates, while also allowing better traversal in the selection stage. 
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Environment 

All results were calculated using the following installed software and hardware. 

Software 

Operating System:  Mac OS X 10.6.4 

Java Version:  1.6.0_17 

Hardware 

Processor:   2.66GHz Intel Core 2 Duo  

Memory:   4GB 1067 MHz DDR3 

 

Storing & Retrieving Game Results 

As each game ends, the game information is saved into a text file. This information includes the 

players, the scores, the winner, and the date of the game. These results were processed by another 

program whose primary job was to display the bots estimated win rate along with the corresponding 

accuracy and confidence margins (as explained in the section below). 

 

Confidence 

The observed win rate when the Monte Carlo bot plays against GoodBot is our best estimate of the 

bots actual advantage or disadvantage over GoodBot. However, because neither program gains any 

knowledge from previous games, each game can be considered as a single random trial between the 

two programs. Therefore we can produce confidence intervals for the true win rate using the observed 

data. The standard formula for a 95% confidence interval (using a normal approximation to the 

binomial distribution) after n trials is: 

 ̅        ̅ 

[17] 

Where, 

 ̅  
    

 
 

[18] 

And, 

 ̅   √
 ̅(   ̅)

 
  

[19] 

 

 

The significance of 95% confidence in an interval is that if the true win rate were to lie outside of this 

interval, then results as extreme as those we observed would have occurred less than 1 time in 20.  
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Chapter 6: Future Work 

 

The MCTS bot plays weaker moves at the start of the game because fewer simulations can be 

performed. To test the impact this has on the final results, a new version of the MCTS bot could be 

created that simply plays randomly for the first half of the game. If this new bot performs similarly to 

the original MCTS bot (against a common opponent), it can be concluded that the early stages of the 

game provides little influence towards the end results.  

A fast approach to simulate games is to simply choose moves randomly in the selection stage. When 

the number of simulations is small the win rates often become a misleading representation. By adding 

expert knowledge to the game tree simulated games can better represent played moves. This leads to 

more relevant game outcomes which can improve the decisions made if few simulations are 

performed. Although adding expert knowledge has been found to be a successful optimisation for 

MCTS
[14]

, it has many disadvantages that make it impracticable for Tantrix. 

The three main disadvantages for using expert knowledge in Tantrix are: 

 It relies on a static evaluation function; 

 Reliable evaluation functions for Tantrix are hard to find. 

 It greatly reduces the number of simulations that can be performed in the same timeframe; 

 This means there is less information to calculate win rates from. 

 It can make the bot exploitable; 

 Players can recognise patterns on what the expert knowledge thinks good moves are 

and can use these decisions to their advantage. 

The focus of this report was on the more strategic two player version of Tantrix. This leaves an 

opportunity for future projects to investigate the use of MCTS in three and four player games and 

extend this project to cover these versions.  

If multiple nodes each have a win rate of 100% they are all explored equally. The move chosen is 

generally the first of these encountered. A future improvement could to use a simple evaluation 

function at this point to pick the move that maximises the score difference. This will cause the Monte 

Carlo bot to try and win by the largest margin possible in the final moves of the game. 

Although the time limit per game is fifteen minutes, the bot‘s decision time was greatly restricted to 

speed up gameplay and make it a more enjoyable opponent. It was shown in the results section that 

the bots performance can be improved by increasing the time it has for each move. The same 

performance increase could be expected from making the bot faster, as more simulations could be 

performed per turn. This improves the accuracy of the estimated win rate for each node and provides 

the selection stage more choice on which parts of the tree to explore.  

Parallel support  

Some ways to provide parallel support include: 

 Running multiple simulations in parallel 

 The results from multiple simulations can then be backpropagated back up the tree 

 Running the whole tree-traversal and simulation process in parallel on a shared tree 

 Allows more nodes to be visited than simply running the simulations in parallel 
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 Each traversal relies on results from previous traversals so it is different to the 

sequential version. 

 Running the whole tree-traversal and simulation process in parallel on individual trees 

 Results can be combined when it is time to make a decision 

 Performs the same as sequential MCTS. 

 The paper by Rimmel
[7]

 has already looked into these different approaches and concluded that 

the overhead from sharing tree data is too great to offer any substantial improvements to the 

results without altering the algorithm itself. 

 

Unsolved Problems 
 
The focus of this project was to test to see if MCTS could be a viable alternative to the current Tantrix 

bot designs. Customising the Tantrix system itself and how it stores and finds information was left for 

future work; because of this some problems were inherited from the existing implementation. Since 

the Tantrix system does not have a continuous playing surface, a long string of tiles played in the 

same direction can occasionally play off the end of the table. This problem occurs rarely but once 

encountered it causes an error to be thrown during the calculation each player‘s score. At this point 

the automatic playing of games stops to allow the scores to be verified by a human. To avoid the 

possibility of ever meeting this exception, future projects need to create their own implementation of 

the game.  

 

After running the MCTS bot through a profiler it can be seen that a large amount of time is spent 

searching for free and forced moves. Currently the Tantrix system does this by brute force. The 

outline of the board is examined and every available tile in every orientation is tested to see whether it 

could fit. This needs to be done for every simulated move in every simulation and becomes the major 

bottleneck in the MCTS bot. An alternative approach would be to update and reuse the previous list of 

available moves. This reduces the number of moves that need to be recalculated to moves residing in 

a local area of the board, thus speeding up the process considerably, and allowing the MCTS bot to 

play out more simulations per move.  
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Chapter 7: Conclusion  

 

Following the success of MCTS in the game of Go, this report set out to see if MCTS could be a 

viable algorithm for the game of Tantrix. Not only did MCTS prove to be a viable algorithm it out 

performed all existing designs. MCTS was implemented into a Tantrix playing bot to control how its 

moves are chosen. This bot was then played against the best performing bots on the Tantrix server 

(Oliver and GoodBot).  

 

The MCTS bot played 340 games against both Oliver and GoodBot using an alpha of 0.5. Even 

though the MCTS bot was restricted to only 6 seconds per move it still out performed both of its 

opponents. Against Oliver the MCTS bot won 229 games (only losing 90) to give it a win rate of 

71.8%. The same MCTS bot won 214 games against GoodBot while losing 100 games (a winning 

percentage of 68.2%).  

 

These results show that by implementing MCTS into a Tantrix playing bot considerable performance 

improvements were noticed over the existing designs. It was found that MCTS can be used 

successfully as an alternative to static evaluation functions and with minimal changes this algorithm 

can be effectively adapted to suit complex games such as Tantrix.   

 

This project further demonstrates the potential of MCTS, and helps show the flexibility of the 

algorithm by verifying another game that MCTS can be successfully applied to. I feel this project is a 

step in the right direction to creating a more universal MCTS algorithm that can play successfully in a 

range of different games without any changes to the MCTS algorithm itself. I hope that this work will 

provide a good base for the future development of Tantrix playing bots and can be used towards 

creating a more general game playing MCTS strategy. 
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Appendix A 

Source Code for MCTS 

Simulation Method 
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Selection, Expansion and Backpropagation Method 
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Appendix B - Detailed Results

 

alpha=0.5 Time=10s VERSE 

GoodBot 

wins      = 234 

lost      = 77 

played    = 333 

Win rate  = 75.2 +/- 4.6 

------------------------------ 

alpha=0.5 Time=1s VERSE 

GoodBot 

wins      = 208 

lost      = 358 

played    = 611 

Win rate  = 36.7 +/- 3.8 

------------------------------ 

alpha=0.5 Time=2s VERSE 

GoodBot 

wins      = 214 

lost      = 250 

played    = 503 

Win rate  = 46.1 +/- 4.4 

------------------------------ 

alpha=0.5 Time=3s VERSE 

GoodBot 

wins      = 200 

lost      = 176 

played    = 417 

Win rate  = 53.2 +/- 4.8 

------------------------------ 

alpha=0.5 Time=5s VERSE 

GoodBot 

wins      = 74 

lost      = 47 

played    = 134 

Win rate  = 61.2 +/- 8.3 

------------------------------ 

alpha=0.5 Time=6s VERSE 

GoodBot 

wins      = 197 

lost      = 90 

played    = 312 

Win rate  = 68.6 +/- 5.1 

------------------------------ 

alpha=0.5 Time=7s VERSE 

GoodBot 

wins      = 354 

lost      = 163 

played    = 560 

Win rate  = 68.5 +/- 3.8 

------------------------------ 

alpha=0.5 Time=8s VERSE 

GoodBot 

wins      = 162 

lost      = 71 

played    = 257 

Win rate  = 69.5 +/- 5.6 

------------------------------ 

 

 

 

 

 

alpha=0.5 Time=9s VERSE 

GoodBot 

wins      = 311 

lost      = 129 

played    = 478 

Win rate  = 70.7 +/- 4.1 

------------------------------ 

alpha=0 Time=4s VERSE 

GoodBot 

wins      = 0 

lost      = 53 

played    = 53 

Win rate  = 0.0 

------------------------------ 

alpha=0.2 Time=4s VERSE 

GoodBot 

wins      = 71 

lost      = 102 

played    = 204 

Win rate  = 41.0 +/- 6.8 

------------------------------ 

alpha=0275 Time=4s VERSE 

GoodBot 

wins      = 158 

lost      = 125 

played    = 309 

Win rate  = 55.8 +/- 5.5 

------------------------------ 

alpha=0.35 Time=4s VERSE 

GoodBot 

wins      = 175 

lost      = 90 

played    = 301 

Win rate  = 66.0 +/- 5.4 

------------------------------ 

alpha=0.425 Time=4s VERSE 

GoodBot 

wins      = 173 

lost      = 123 

played    = 321 

Win rate  = 58.4 +/- 5.4 

------------------------------ 

alpha=0.5 Time=4s VERSE 

GoodBot 

wins      = 174 

lost      = 139 

played    = 341 

Win rate  = 55.6 +/- 5.3 

------------------------------ 

alpha=0.575 Time=6 VERSE 

GoodBot 

wins      = 132 

lost      = 72 

played    = 226 

Win rate  = 64.7 +/- 6.2 

------------------------------ 

 

 

 

 

 

alpha=0.65 Time=4s VERSE 

GoodBot 

wins      = 138 

lost      = 93 

played    = 251 

Win rate  = 59.7 +/- 6.1 

------------------------------ 

alpha=0.725 Time=4s VERSE 

GoodBot 

wins      = 272 

lost      = 196 

played    = 518 

Win rate  = 58.1 +/- 4.2 

------------------------------ 

alpha=0.8 Time=4s VERSE 

GoodBot 

wins      = 177 

lost      = 98 

played    = 287 

Win rate  = 64.4 +/- 5.5 

------------------------------ 

alpha=0.9 Time=4s VERSE 

GoodBot 

wins      = 322 

lost      = 266 

played    = 638 

Win rate  = 54.8 +/- 3.9 

------------------------------ 

alpha=1.0 Time=4s VERSE 

GoodBot 

wins      = 193 

lost      = 158 

played    = 379 

Win rate  = 55.0 +/- 5.0 

------------------------------ 

alpha=1.3 Time=4s VERSE 

GoodBot 

wins      = 194 

lost      = 203 

played    = 424 

Win rate  = 48.9 +/- 4.8 

------------------------------ 

alpha=0.325 Time=6 VERSE 

GoodBot 

wins      = 112 

lost      = 57 

played    = 184 

Win rate  = 66.3 +/- 6.8 

------------------------------ 

alpha=0.325 Time=6 VERSE 

Oliver 

wins      = 170 

lost      = 58 

played    = 245 

Win rate  = 74.6 +/- 5.5 

------------------------------ 
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alpha=0.5 Time=6 VERSE 

GoodBot 

wins      = 214 

lost      = 100 

played    = 340 

Win rate  = 68.2 +/- 5.0 

------------------------------ 

alpha=0.5 Time=6 VERSE 

Oliver 

wins      = 229 

lost      = 90 

played    = 340 

Win rate  = 71.8 +/- 4.8 

------------------------------ 

 


